LGS Crystal
LGS(La3Ga5SiO14 )is a multifunctional intraocular crystal that can be used as an electro-optic crystal after considering and studying the interaction between electro-optic effect and optical rotation in functional crystals. The LGS electro-optic Q switch passes light along the Z direction of the crystal and applies an electric field along the X direction, which can make full use of the lateral electro-optic effect of the crystal to realize the Q-switch function of the LGS crystal. The electro-optic Q-switch made by LGS is actually a new kind of rotation-electro-optical Q-switch. Because of the effect of optical rotation, it can be used as a practical switch and a good Q-modulation result can be obtained. LGS crystal widens the new direction of exploring and discovering new electro-optic crystals from optically active crystals.
Parameter
Point group | 32 |
Airborne group | P32I |
specific resistance | 4.0×1012Ω/cm-1 |
Thickness | 0.13-0.5mm |
Diameter | 50mm |
Length | 90-100mm |
Melting point | 1470℃ |
Density | 5.67g/cm3 |
Mohs hardness | 5.5 |
Thermal expansion coefficient | aa=16×10-6/K, ac=4×10-6/K |
Photo damage threshold | 670MV/cm2 |
Cell Parameters | a=b=0.8162nm,c=0.5087nm |
Dielectric constant | ε11=18.27 |
ε33=55.26 | |
Electro-optical coefficients | γ11=2.3×10-12m/V |
γ33=1.8×10-12m/V | |
Piezoelectric strain constant (10-12)C/N | d11=6.3 |
d14=-5.4 | |
Phase velocity,m/s | 2750~2850 |
Electromechanical coupling coefficient, K[ %] | 0.28~0.46 |
Solubility | None |
Coefficient of thermal expansion | α11=5.15×10-6K-1 |
α33=3.65×10-6K-1 |
Maximum operating frequency | 50KHz |
Maximum output power | 7.5W |
Pulse width | 46ns |
Energy output -40℃ | 155mJ |
Energy output +50℃ | 163mJ |
Room temperature energy output | 167mJ |
Electro-optic conversion efficiency | 1.26% |
Propertie | Quartz | LGS | Li2B4O7 | LiTaO3 |
Electromechanical Coupling Factor K, %(BAW) | 7 | 15.8 | 24 | 47 |
Frequency Spacing Δf, % | 0.25 | 0.9 | 4 | 7 |
Q-Factor Q, ×103 | 100 | 50 | 10 | 2 |
Temperature Frequency Coefficient TFC,×10-6/℃ | 0.5 | 1.6 | 6 | 4 |
Properties | Quartz | LGS |
Density, g/cm³ | 2.65 | 5.746 |
SAW Velocity Vef, m/s | (0°, 132.75°, 0°) | (0°, 140°, 25°) |
3157 | 2756 | |
Electromechanical coupling factor K2emc, %(SAW) | 0.14 | 0.36 |
Second order temp. coef.α2, ×10-8/℃ | -3.2 | -6.8 |
Temp. Coef. TTO, ℃ | 25 | 23 |
Dielectric Constant e | 4.92 | 27 |
Power flow angle , ° | 0 | 0.5 |
Constant | Relative Dielectric Constant | Piezoelectric Constant (pC/N) | Elastic Stiffness(1011 Pa) | |||||||
ε11 | ε33 | d11 | d14 | c11 | c12 | c13 | c14 | C33 | C44 | |
Value | 18.96 | 50.19 | 5.66 | -5.48 | 1.898 | 1.058 | 1.022 | 0.144 | 2.626 | 0.535 |
First Order Temp. Coef.(10-6·K-1) | 150 | -760 | 329 | -342 | -66 | 204 | -75 | -335 | -94 | -63 |
- High damage threshold
- Good optical rotation
- Can withstand high and low temperature changes
- Stable physical and chemical properties
- High electromechanical coupling coefficient (3 times of quartz)
- Low equivalent series resistance
- Electro-optic Q-switch
- SAW device
- BAW device
- Sensor
- High power high repetition rate all solid state laser
- High and low temperature change laser
The defect distribution and chemical etching of Langasite(La3Ga5SiO14) crystals grown by the Czochralski method Materials Letters 46 2000 354–357 |
Optimal length of an electro-optical Q-switch with optical activity crystal La3Ga5SiO14 Optics & Laser Technology 39 (2007) 507–509 |
Growth, properties and electrooptical applications of single crystal La3Ga5SiO14 Optical Materials 23 (2003) 393–397 |
Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications Journal of Crystal Growth 163 (1996) 388-392 |
Performance of Nd:YLF laser by using La3Ga5SiO14 crystal electrooptic Q-switch Optics & Laser Technology 37 (2005) 608–611 |
If you can’t find the Literature you want, Contact us to get the PDF Get the Literature
Radiation-induced amorphization of Langasite La3Ga5SiO14 Journal of Nuclear Materials 500 (2018) 50e55 |
Protons in acceptor doped langasite, La3Ga5SiO14 Solid State Ionics 264 (2014) 76–84 |
Photoluminescence and scintillation of LGS (La3Ga5SiO14), LNGA (La3Nb0.5Ga5.3Al0.2O14) and LTGA (La3Ta0.5Ga5.3Al0.2O14) single crystals Optical Materials 34 (2012) 1513–1516 |
Optical activity and acoustic properties of La3Ga5SiO14 Materials Chemistry and Physics 97 (2006) 200–202 |
Crystal field energy levels, spin-Hamiltonian parameters and local structures for the Cr3t and Mn4t centers in La3Ga5SiO14 crystals Optical Materials 64 (2017) 310e313 |
Effect of starting melt composition on crystal growth of La3Ga5SiO14 Journal of Crystal Growth 197 (1999) 204—209 |
Crystal growth and characterization of La3Ga5SiO14 single crystals Optical Materials 23 (2003) 471–474 |
Crystal growth and piezoelectric properties of langasite La3Ga5SiO14 crystals Materials Letters 41 1999 241–246 |
Tm-doped Langasite (La3Ga5SiO14) crystals grown by the Czochralski method for optical applications Materials Letters 57 (2002) 28 – 31 |
Optical transitions in Ho3+ doped La3Ga5SiO14 crystals Journal of Alloys and Compounds 436 (2007) 364–368 |
Structural changes of piezoelectric La3Ga5SiO14 induced by paramagnetic ions revealed by 71Ga multiple quantum magic angle spinning Solid State Nuclear Magnetic Resonance 36 (2009) 92–95 |
Piezoelectric driven resonant beam array in langasite (La3Ga5SiO14) Sensors and Actuators A 132 (2006) 271–277 |
Self-tuning in birefringent La3Ga5SiO14:Nd3+ laser crystal Optical Materials 27 (2005) 1692–1696 |
Piezooptical coefficients of La3Ga5SiO14 and CaWO4 crystals: A combined optical interferometry and polarization-optical study Optical Materials 33 (2010) 26–30 |
Tungsten/molybdenum thin films for application as interdigital transducers on high temperature stable piezoelectric substrates La3Ga5SiO14 and Ca3TaGa3Si2O14 Materials Science and Engineering B 202 (2015) 31–38 |
Effects of oxygen pressure on La3Ga5SiO14 thin films grown by pulsed laser deposition JOURNAL OF RARE EARTHS, Vol. 28, No. 3, Jun. 2010, p. 420 |